Skip to main content

Experimental study of turbulence, sedimentation, and coignimbrite mass partitioning in dilute pyroclastic density currents

Article

Publications

Complete Citation

Overview

Abstract

  • Laboratory density currents comprising warm talc powder turbulently suspended in air simulate many aspects of dilute pyroclastic density currents (PDCs) and demonstrate links between bulk current behavior, sedimentation, and turbulent structures. The densimetric and thermal Richardson, Froude, Stokes, and settling numbers match those of natural PDCs as does the ratio of thermal to kinetic energy density. The experimental currents have lower bulk Reynolds numbers than natural PDCs, but the experiments are fully turbulent. Consequently, the experiments are dynamically similar to the dilute portions of some natural currents. In general, currents traverse the floor of the experimental tank, sedimenting particles and turbulently entraining, heating, and thermally expanding air until all particles sediment or the currents become buoyant and lift off to form coignimbrite plumes. When plumes form, currents often undergo local flow reversals. Current runout distance and liftoff position decrease with increasing densimetric Richardson number and thermal energy density. As those parameters increase, total sedimentation decreases such that > 50% of initial current mass commonly fractionates into the plumes, in agreement with some observations of recent volcanic eruptions. Sedimentation profiles are best described by an entraining sedimentation model rather than the exponential fit resulting from non-entraining box models. Time series analysis shows that sedimentation is not a constant rate process in the experiments, but rather occurs as series of sedimentation-erosion couplets that propagate across the tank floor tracking current motion and behavior. During buoyant liftoff, sedimentation beneath the rising plumes often becomes less organized. Auto-correlation analysis of times series of particle concentration is used to characterize the turbulent structures of the currents and indicates that currents quickly partition into a slow-moving upper portion and faster, more concentrated, lower portion. Air entrainment occurs within the upper region. Turbulent structures within the lower region track sedimentation-erosion waves and indicate that eddies control deposition. Importantly, both eddies and sedimentation waves track reversals in flow direction that occur following buoyant liftoff. Further, these results suggest that individual laminations within PDC deposits may record passage of single eddies, thus the duration of individual PDCs may be estimated as the product of the number of laminations and the current's turbulent timescale.

Publication Date

  • 2012

Authors