Skip to main content

The Densest Galaxy

Article

Publications

Complete Citation

  • Strader, Jay, Seth, Anil C., Forbes, Duncan A., Fabbiano, Giuseppina, Romanowsky, Aaron J., Brodie, Jean P., Conroy, Charlie, Caldwell, Nelson, Pota, Vincenzo, Usher, Christopher, and Arnold, Jacob A. 2013. "The Densest Galaxy." The Astrophysical Journal Letters, 775 L6. https://doi.org/10.1088/2041-8205/775/1/L6.

Overview

Abstract

  • We report the discovery of a remarkable ultra-compact dwarf galaxy around the massive Virgo elliptical galaxy NGC 4649 (M60), which we call M60-UCD1. With a dynamical mass of 2.0 × 108 M but a half-light radius of only ~24 pc, M60-UCD1 is more massive than any ultra-compact dwarfs of comparable size, and is arguably the densest galaxy known in the local universe. It has a two-component structure well fit by a sum of Sérsic functions, with an elliptical, compact (rh = 14 pc n ~ 3.3) inner component and a round, exponential, extended (rh = 49 pc) outer component. Chandra data reveal a variable central X-ray source with LX ~ 1038 erg s-1 that could be an active galactic nucleus associated with a massive black hole or a low-mass X-ray binary. Analysis of optical spectroscopy shows the object to be old (gsim 10 Gyr) and of solar metallicity, with elevated [Mg/Fe] and strongly enhanced [N/Fe] that indicates light-element self-enrichment; such self-enrichment may be generically present in dense stellar systems. The velocity dispersion (σ ~ 70 km s-1) and resulting dynamical mass-to-light ratio (M/LV = 4.9 ± 0.7) are consistent with-but slightly higher than-expectations for an old, metal-rich stellar population with a Kroupa initial mass function. The presence of a massive black hole or a mild increase in low-mass stars or stellar remnants is therefore also consistent with this M/LV . The stellar density of the galaxy is so high that no dynamical signature of dark matter is expected. However, the properties of M60-UCD1 suggest an origin in the tidal stripping of a nucleated galaxy with MB ~ -18 to -19.

Publication Date

  • 2013

Authors