Skip to main content

First-order Resonance Overlap and the Stability of Close Two-planet Systems

Article

Publications

Complete Citation

Overview

Abstract

  • Motivated by the population of observed multi-planet systems with orbital period ratios 1 2/P 1 1/m 2, and hence the overlap criterion is independent of the planetary mass ratio at lowest order. Numerical integrations confirm that the planetary mass ratio has little effect on the structure of the chaotic phase space for close orbits in the low-eccentricity (e , and hence the overlap criterion is independent of the planetary mass ratio at lowest order. Numerical integrations confirm that the planetary mass ratio has little effect on the structure of the chaotic phase space for close orbits in the low-eccentricity (e ) planetary systems with initially circular orbits the period ratio at which complete overlap occurs and widespread chaos results lies in a region of parameter space which is Hill stable. Our work indicates that a resonance overlap criterion which would apply for initially eccentric orbits likely needs to take into account second-order resonances. Finally, we address the connection found in previous work between the Hill stability criterion and numerically determined Lagrange instability boundaries in the context of resonance overlap.

Publication Date

  • 2013

Authors