Skip to main content

X-Ray-selected Galaxy Groups in Boötes

Article

Publications

Complete Citation

Overview

Abstract

  • We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N gals) and the optical luminosity (L opt). Our final sample comprises 32 systems at z ). Our final sample comprises 32 systems at z gr ) and perform a virial analysis to obtain the radii (R 200 and R 500) and total masses (M 200 and M 500) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (LX ). We examine the performance of the group properties σgr, L opt, and LX , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the LX -M 500 relation at approximately M 500 = 5 × 1013 M (for M 500 > 5 × 1013 M , M_{500} \propto L_X^{0.61 /- 0.02}, while for M 500 13 M , M_{500} \propto L_X^{0.44 /- 0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify ~1800 groups (LX = 1041-1043 erg s-1) within a distance of 200 Mpc. Since groups lie in large-scale filaments, this group sample will map the large-scale structure of the local universe.

Publication Date

  • 2014

Authors