Skip to main content

The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24-30 (1999- 2011)

Article

Publications

Overview

Abstract

  • Mars Daily Global Maps (MDGM) derived from the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) are used to study the distribution and evolution of large dust storms over the period from Mars years 24-30 (1999-2001). Large storms are defined here as discrete dust events visible in image sequences extending over at least 5 sols (Mars days) and where the dust covers areas beyond the origination region. A total of 65 large dust storms meeting these criteria are identified during the observational period and all are observed during the Ls = 135-30° seasonal window. Dust storms originating in the northern and southern hemispheres appear to form two distinct families. All but two of the storms originating in the northern hemisphere are observed in two seasonal windows at Ls = 180-240° and Ls = 305-350°; while all but two of those originating in the southern hemisphere are observed during Ls = 135-245°. None of the large dust storms originating in the northern hemisphere are observed to develop to global scale, but some of them develop into large regional storms with peak area >1 × 107 km2 and duration on the order of several weeks. In comparison, large dust storms originating in the southern hemisphere are typically much smaller, except notably in the two cases that expanded to global scale (the 2001 and 2007 global storms). Distinct locations of preferred storm origination emerge from the dust storm image sequences, including Acidalia, Utopia, Arcadia and Hellas. A route (trajectory) 'graph' for the observed sequences is provided. The routes are highly asymmetric between the two hemispheres. In the south, for non-global dust storms, the main routes are primarily oriented eastwest, whereas in the north, the routes are primarily north-south and zonally-concentrated into meridional channels. In a few impressive cases, storms originating in the northern hemisphere are observed to "flush" through Acidalia and Utopia, across the equator, and then branch in the low- and mid-southern latitudes. The origin of the 2007 global dust storm is ambiguous from the imaging data. Immediately prior to the global storm, a dust storm sequence from Chryse is identified. This storm's connection to the explosive expansion observed to start from Noachis/West Hellas is unclear due to image coverage. This paper further identifies and describes three different styles of dust storm development, which we refer to as "consecutive dust storms", "sequential activation" and "merging." The evolution of a given dust storm sequence can exhibit different combinations of these growth styles at different stages of development. Dust storm sequences can overlap in time, which makes them good candidate to grow into larger scale.

Publication Date

  • 2015

Authors