Skip to main content

Influences of Natural and Anthropogenic Factors and Tidal Restoration on Terrestrial Arthropod Assemblages in West Coast North American Estuarine Wetlands

Article

Overview

Abstract

  • Compared to benthic and water-column invertebrate assemblages, considerably less is known about terrestrial arthropods inhabiting estuarine wetlands despite their importance to tidal wetland biodiversity and productivity. We also need to know more about how human modification of estuaries, including efforts to restore estuarine wetlands, affects these assemblages. To address this knowledge gap, we assembled data from multiple studies on terrestrial arthropod assemblages from 87 intertidal wetland sites in 13 estuaries along the west coast of North America. Arthropods were sampled between 1998 and 2013 with fallout traps deployed in wetlands for 1 to 3 days at a time. We describe patterns in the abundance and taxonomic composition of terrestrial arthropods and evaluate the relative ability of natural and anthropogenic factors to explain variation in abundance and composition. Arthropod abundance was highly variable. Vegetation assemblage, precipitation, and temperature best explained variation in arthropod abundance, while river discharge, latitude, and developed and agricultural land cover surrounding sampling sites were less important. Arthropod abundance rapidly achieved levels of reference wetlands after the restoration of tidal influence to leveed wetlands, regardless of surrounding land cover. However, arthropod assemblage composition was affected by the amount of developed land cover as well as restoration age. These results suggest that restoration of tidal influence to leveed wetlands can rapidly restore some components of estuarine wetland ecosystems but that recovery of other components will take longer and may depend on the extent of anthropogenic modification in the surrounding landscape.

Published In

Publication Date

  • 2016

Identity

Digital Object Identifier (doi)

Additional Document Info

Start Page

  • 1491

End Page

  • 1504

Volume

  • 39

Issue

  • 5