Skip to main content

The complete mitochondrial genome of the land snail Cerion incanum (Gastropoda: Stylommatophora) and the phylogenetic relationships of Cerionidae within Panpulmonata

Article

Publications

Complete Citation

Overview

Abstract

  • The complete mitochondrial genome of the neotype of Cerion incanum (Leidy, 1851) was sequenced using high-throughput sequencing and found to be a circular genome 15,117 bp in length with a GC content of 34.3%. It is the largest mitogenome presently known in Stylommatophora, with the difference in size due primarily to intergenic regions and to a lesser extent to larger sizes of individual genes. Gene content is identical to that of other stylommatophorans, but differs in having the tRNA-Gln gene situated on the major coding strand. Gene order of C. incanum was similar to that in Helicidae, differing in the regions between COX1 and NADH5, and between tRNA-Ser2 and tRNA-Ile. The potential origin of replication was located in a 50-bp noncoding region between COX3 and tRNA-Ile. Phylogenetic analyses using Bayesian inference and maximum-likelihood analyses of nucleotide data for all protein-coding and large and small ribosomal genes resulted in a well-resolved tree. This tree was similar to trees derived from nuclear or a combination of nuclear and mitochondrial genes, differing from previous phylogenetic reconstructions based on mitogenomes in the placement of Hygrophila. The phylogenetic position of Cerionidae as sister taxon to Helicoidea is consistent with previous findings after allowing for more limited taxon sampling in the mitogenome tree. The mitogenome tree is sufficiently populated to refute the inclusion of Cerionidae in Clausiloidea, as advocated by some authors, but at present lacks the representatives of the Orthalicoidea or Urocoptoidea needed to resolve more precisely its relationships with those taxa.

Publication Date

  • 2016

Authors