Skip to main content

An eddy, a wake and a plume: controls on bathyal foraminifera around Tobago, western tropical Atlantic Ocean

Article

Publications

Complete Citation

Overview

Abstract

  • Oceanic islands in the paths of currents induce the development of wakes and stationary eddies. The situation to the lee of Tobago, western tropical Atlantic Ocean, is further complicated by the occurrence of the seasonally variable, hypopycnal Orinoco plume. Here we investigate the impact of the combined plume, wake and eddy on bathyal benthic foraminifera to the NW of Tobago. Three surface sediment samples were recovered from around each of five well-sites to the NW of Tobago, three of the sites (Warap-A, Cassra-A and Cassra-CC) being at upper bathyal depths and two (Bene-1, Sancoche-1) at middle bathyal depths. Warap-A, Cassra-A, Cassra-CC and Bene-1 form a transect along the northern side of the leeward wake, while the other two sites are in the vicinity of the stationary eddy. The samples obtained around Sancoche-1 were taken north of the wake. These were supplemented by samples from four 80-cm piston cores from upper bathyal and outer neritic depths sampled at ~ 10 cm intervals. Benthic foraminifera reveal different biofacies at upper (Warap-A, Cassra-A, Cassra-CC) and middle (Bene-1, Sancoche-1) bathyal depths. The upper bathyal biofacies is dominated by Cassidulina curvata and the middle bathyal biofacies contains abundant Uvigerina hispidocostata, both of which are indicative of a high nutrient flux. The presence of Martinottiella communis and M. pallida at Warap-A indicate that pore waters are low in dissolved oxygen in the immediate lee of the island. Percentages of the fauna as serial tests indicated decreasing current velocities with increasing depth, as confirmed by the high abundance of Cibicides ex gr. aknerianus in the shallowest water core. Upper bathyal bottom-current strength was at its lowest in the immediate lee of the island. Species indicative of a perennial nutrient flux were more abundant to the NW, where the interaction of the plume and eddy appears to concentrate nutrients. The short cores, each from a different biofacies, indicate that these environmental conditions have been in place for at least the later Holocene. The most northerly, upper bathyal core presented a stable community structure with low assemblage turnover, while two cores taken farther south (upper bathyal and outer neritic) had an expansive structure with high assemblage turnover. These data raise the possibility of using benthic foraminifera to track the positions of the plume, core and eddy throughout the later Neogene.

Publication Date

  • 2018

Authors