Skip to main content

Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter

Article

Overview

Authors

  • Craig, Matthew E., Turner, Benjamin L., Liang, Chao, Clay, Keith, Johnson, Daniel J. and Phillips, Richard P.

Abstract

  • Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long-term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM-dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition - e.g., most AM-dominated forests - enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM-dominance in three temperate forests. By focusing on sites where AM- and ECM-plants co-occur, our analysis controls for climatic factors that co-vary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM-dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM. This article is protected by copyright. All rights reserved.

Published In

Publication Date

  • 2018

Identity

Digital Object Identifier (doi)

Additional Document Info

Start Page

  • 3317

End Page

  • 3330

Volume

  • 24

Issue

  • 8