Skip to main content

Suppression of Coronal Mass Ejections in Active Stars by an Overlying Large-scale Magnetic Field: A Numerical Study

Article

Publications

Complete Citation

Overview

Abstract

  • We present results from a set of numerical simulations aimed at exploring the mechanism of coronal mass ejection (CME) suppression in active stars by an overlying large-scale magnetic field. We use a state-of-the-art 3D magnetohydrodynamic code that considers a self-consistent coupling between an Alfvén wave-driven stellar wind solution, and a first-principles CME model based on the eruption of a flux rope anchored to a mixed-polarity region. By replicating the driving conditions used in simulations of strong solar CMEs, we show that a large-scale dipolar magnetic field of 75 G is able to fully confine eruptions within the stellar corona. Our simulations also consider CMEs exceeding the magnetic energy used in solar studies, which are able to escape the large-scale magnetic field confinement. The analysis includes a qualitative and quantitative description of the simulated CMEs and their dynamics, which reveals a drastic reduction of the radial speed caused by the overlying magnetic field. With the aid of recent observational studies, we place our numerical results in the context of solar and stellar flaring events. In this way, we find that this particular large-scale magnetic field configuration establishes a suppression threshold around ~3 × 1032 erg in the CME kinetic energy. Extending the solar flare-CME relations to other stars, such CME kinetic energies could be typically achieved during erupting flaring events with total energies larger than 6 × 1032 erg (GOES class ~X70).

Publication Date

  • 2018

Authors