Skip to main content

A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing

Article

Publications

Complete Citation

  • Zavala, Jorge A., Montaña, Alfredo, Hughes, David H., Yun, Min S., Ivison, R. J., Valiante, Elisabetta, Wilner, David, Spilker, Justin, Aretxaga, Itziar, Eales, Stephen, Avila-Reese, Vladimir, Chávez, Miguel, Cooray, Asantha, Dannerbauer, Helmut, Dunlop, James S., Dunne, Loretta, Gómez-Ruiz, Arturo I., Michałowski, Michał J., Narayanan, Gopal, Nayyeri, Hooshang, Oteo, Ivan, Rosa González, Daniel, Sánchez-Argüelles, David, Schloerb, F. Peter, Serjeant, Stephen et al. 2018. "A dusty star-forming galaxy at z = 6 revealed by strong gravitational lensing." Nature Astronomy, 2 56–62. https://doi.org/10.1038/s41550-017-0297-8.

Overview

Abstract

  • Since their discovery, submillimetre-selected galaxies1,2 have revolutionized the field of galaxy formation and evolution. From the hundreds of square degrees mapped at submillimetre wavelengths3-5, only a handful of sources have been confirmed to lie at z > 5 (refs 6-10) and only two at z ≥ 6 (refs 11,12). All of these submillimetre galaxies are rare examples of extreme starburst galaxies with star formation rates of ≳1,000 M yr-1 and therefore are not representative of the general population of dusty star-forming galaxies. Consequently, our understanding of the nature of these sources, at the earliest epochs, is still incomplete. Here, we report the spectroscopic identification of a gravitationally amplified (μ = 9.3 ± 1.0) dusty star-forming galaxy at z = 6.027. After correcting for gravitational lensing, we derive an intrinsic less-extreme star formation rate of 380 ± 50 M yr-1 for this source and find that its gas and dust properties are similar to those measured for local ultra luminous infrared galaxies, extending the local trends to a poorly explored territory in the early Universe. The star-formation efficiency of this galaxy is similar to those measured in its local analogues13, despite a 12 Gyr difference in cosmic time.

Publication Date

  • 2018

Authors