Skip to main content

Dimethyl sulfoxide maintains structure and function of cryopreserved equine endometrial explants

Article

Publications

Complete Citation

Overview

Abstract

  • Availability of viable frozen-thawed endometrial tissues could facilitate detailed studies into physiologic and disease processes influencing the endometrium. This study was designed to investigate the cryosurvival of equine endometrial tissue. Previous studies in the human and horse have focused on cryopreservation of dissociated endometrial cells. To our knowledge, there are no studies on cryopreservation of endometrial explants. Our objectives were to 1) determine the influence of differing concentrations of the permeating cryoprotectant dimethyl sulfoxide (Me2SO) on viability, structural integrity, and gene expression of cryopreserved equine endometrial tissues prior to and following a 5-day explant culture in vitro and 2) examine the influence of low (1000 mg/L dextrose) vs high (4500 mg/L dextrose) glucose medium during in vitro culture. Both 10% and 20% (v/v) concentrations of Me2SO maintained viability following cryopreservation and in vitro culture. In addition, gene expression remained unaltered following cryopreservation with either 10% or 20% Me2SO. However, tissue structural integrity was slightly reduced compared to the fresh control. Furthermore, there was no difference in structural integrity, cell viability, or gene expression between low and high glucose medium during in vitro culture. Although E-cadherin and Ki67 gene expression was not different among fresh, 10% Me2SO, and 20% Me2SO treatments prior to or following tissue culture, estrogen receptor-α and progesterone receptor gene expression were reduced in all groups after explant culture. This is the first report of successful cryopreservation of equine endometrial explants.

Publication Date

  • 2019

Authors