Macaulay, E., Nichol, R. C., Bacon, D., Brout, D., Davis, T. M., Zhang, B., Bassett, B. A., Scolnic, D., Möller, A., D'Andrea, C. B., Hinton, S. R., Kessler, R., Kim, A. G., Lasker, J., Lidman, C., Sako, M., Smith, M., Sullivan, M., Abbott, T. M. C., Allam, S., Annis, J., Asorey, J., Avila, S., Bechtol, K., Brooks, D., et al
Abstract
We present an improved measurement of the Hubble constant (H0) using the `inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 ) using the `inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 ) using the `inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 ) using the `inverse distance ladder' method, which adds the information from 207 Type Ia supernovae (SNe Ia) from the Dark Energy Survey (DES) at redshift 0.018 0 with SNe Ia use a distance ladder of parallax and Cepheid variable stars, the inverse distance ladder relies on absolute distance measurements from the BAOs to calibrate the intrinsic magnitude of the SNe Ia. We find H0 = 67.8 ± 1.3 km s-1 Mpc-1 (statistical and systematic uncertainties, 68 per cent confidence). Our measurement makes minimal assumptions about the underlying cosmological model, and our analysis was blinded to reduce confirmation bias. We examine possible systematic uncertainties and all are below the statistical uncertainties. Our H0 value is consistent with estimates derived from the Cosmic Microwave Background assuming a ?CDM universe.