Skip to main content

Exploring Plasma Heating in the Current Sheet Region in a Three-dimensional Coronal Mass Ejection Simulation

Article

Publications

Complete Citation

Overview

Abstract

  • We simulate a coronal mass ejection using a three-dimensional magnetohydrodynamic code that includes coronal heating, thermal conduction, and radiative cooling in the energy equation. The magnetic flux distribution at 1 R s is produced by a localized subsurface dipole superimposed on a global dipole field, mimicking the presence of an active region within the global corona. Transverse electric fields are applied near the polarity inversion line to introduce a transverse magnetic field, followed by the imposition of a converging flow to form and destabilize a flux rope, producing an eruption. We examine the quantities responsible for plasma heating and cooling during the eruption, including thermal conduction, radiation, adiabatic effects, coronal heating, and ohmic heating. We find that ohmic heating is an important contributor to hot temperatures in the current sheet region early in the eruption, but in the late phase, adiabatic compression plays an important role in heating the plasma there. Thermal conduction also plays an important role in the transport of thermal energy away from the current sheet region throughout the reconnection process, producing a "thermal halo" and widening the region of high temperatures. We simulate emission from solar telescopes for this eruption and find that there is evidence for emission from heated plasma above the flare loops late in the eruption, when the adiabatic heating is the dominant heating term. These results provide an explanation for hot supra-arcade plasma sheets that are often observed in X-rays and extreme ultraviolet wavelengths during the decay phase of large flares.

Publication Date

  • 2019

Authors