Skip to main content

Nonequilibrium Ionization in Mixed-morphology Supernova Remnants

Article

Publications

Complete Citation

Overview

Abstract

  • The mixed-morphology class of supernova remnants (MMSNRs) comprises a substantial fraction of observed remnants, but there is no consensus on their origin as yet. A clue to their nature is the presence of regions that show X-ray evidence of recombining plasmas. Recent calculations of remnant evolution in a cloudy interstellar medium that included thermal conduction but not nonequilibrium ionization (NEI) showed promise in explaining observed surface brightness distributions but could not determine whether recombining plasmas were present. In this paper, we present numerical hydrodynamic models of MMSNRs in 2D and 3D, including explicit calculation of NEI effects. Both the spatial ionization distribution and temperature-density diagrams show that recombination occurs inside the simulated MMSNR and that both adiabatic expansion and thermal conduction cause recombination, albeit in different regions. Features created by the adiabatic expansion stand out in the spatial and temperature-density diagrams, but thermal conduction also plays a role. Thus, thermal conduction and adiabatic expansion both contribute significantly to the cooling of high-temperature gas. Realistic observational data are simulated with both spatial and spectral input from various regions. We also discuss the possibility of analyzing the sources of recombination and dominant hydrodynamic processes in observations using temperature-density diagrams and spatial maps.

Publication Date

  • 2019

Authors