Skip to main content

X-Ray Scaling Relations for a Representative Sample of Planck-selected Clusters Observed with XMM-Newton

Article

Publications

Complete Citation

Overview

Abstract

  • We report the scaling relations derived by fitting the X-ray parameters determined from analyzing the XMM-Newton observations of 120 galaxy clusters in the Planck Early Sunyaev-Zel'dovich (SZ) sample spanning the redshift range of 0.059 tot and L-T relations determined for different samples. Mtot-T, Mtot-YX, and Mtot-Mgas relations show little dependence on the dynamical state of the clusters, but the normalizations of these relations may depend on the mass range investigated. Although most of the clusters investigated in this work reside at relatively low redshift, the fits prefer values of γ, the parameter accounting for the redshift evolution, different from the self-similar predictions. This suggests an evolution ( relations show little dependence on the dynamical state of the clusters, but the normalizations of these relations may depend on the mass range investigated. Although most of the clusters investigated in this work reside at relatively low redshift, the fits prefer values of γ, the parameter accounting for the redshift evolution, different from the self-similar predictions. This suggests an evolution (tot-T relation) of the scaling relations. For the first time, we find significant evolution (>3σ) of the Mtot-T relation, pointing to an increase of the kinetic- to-thermal energy ratio with redshift. This is consistent with a scenario in which higher-redshift clusters are on average more disturbed than their lower-redshift counterparts.

Publication Date

  • 2020

Authors