Skip to main content

HiRISE Images of Yardangs and Sinuous Ridges in the Lower Member of the Medusae Fossae Formation, Mars

Article

Overview

Authors

  • Zimbelman, James R. and Griffin, Lora J.

Abstract

  • HiRISE images of the lower member of the Medusae Fossae Formation (MFF) were used to identify characteristics of two specific landforms that are well expressed in this particular geologic unit; yardangs and sinuous ridges. Yardangs are wind-eroded ridges that are usually confined to arid environments where the bedrock materials can be easily eroded by windblown sand. Yardangs are common in the lower member of MFF, where many individual yardangs show evidence of a caprock unit overlying a more friable unit, most consistent with an ignimbrite origin for these MFF deposits. Heights of the yardangs in the lower member materials are generally less than a few tens of meters, in contrast to yardangs in the thicker middle member MFF materials to the east of the study area. The yardangs may form in materials comprised of discreet depositional units, and there is good evidence that at least a dozen such depositional events contributed to the emplacement of the lower member of MFF. The lower member yardang heights indicate aeolian erosion has removed at least 19,000 km3 of lower member MFF materials. Sinuous ridges are elongate, positive-relief landforms that have been attributed to a variety of possible fluvial flow processes on Mars. Sinuous ridges are very common within exposures of the lower member of MFF. Multiple ridge types are present, but all forms seen at HiRISE scale are most consistent with some form of aqueous channel flow rather than other possible origins. The results from this initial examination of HiRISE images indicate the potential utility of comparing yardangs and sinuous ridges in the lower member to other members of MFF, although it remains to be determined if sinuous ridges are abundant in the younger MFF members.

Published In

Publication Date

  • 2010

Authors

Identity

Digital Object Identifier (doi)

Additional Document Info

Start Page

  • 198

End Page

  • 210

Volume

  • 205

Issue

  • 1