Skip to main content

Phototactic responses of larvae from the marine sponges Neopetrosia proxima and Xestospongia bocatorensis (Haplosclerida: Petrosiidae)

Article

Publications

Complete Citation

Overview

Abstract

  • Abstract. Previous studies suggest that phototaxis in sponge larvae is generated by the bending of a tuft of long posterior cilia (LPC). The photoresponsiveness of these cilia is often assayed by examining their reaction to sudden changes in light intensity. Here, we document and describe the larvae of the tropical marine sponges Neopetrosia proxima and Xestospongia bocatorensis and examine the phototactic behavior of their larvae. Both species brood ovoid, tufted parenchymella larvae, clearly countering an earlier hypothesis that all petrosid sponges are oviparous. Larvae of N. proxima were positively phototactic and settled after 2 d, while larvae of X. bocatorensis were negatively phototactic and settled in as little as 4 h. In both species, LPC quickly responded to changes in the light intensity. When the light intensity is reduced, the larvae of N. proxima fold the cilia inwards immediately without beating, then flare them outwards, beating for a few seconds, and then gradually return to the neutral position while continuing to beat. In contrast, the larvae of X. bocatorensis flare the cilia outwards when the light intensity is reduced and fold them inwards when the light intensity is increased. Comparisons with reported ciliary responses to light for other species demonstrate that these responses do not show the hypothesized one-to-one correspondence with phototactic behaviors and are, therefore, of limited use in explaining the mechanisms that coordinate larval swimming.

Publication Date

  • 2010

Authors