Detection of polarized gamma-ray emission from the Crab nebula with the Hitomi Soft Gamma-ray Detector Article uri icon


  • Hitomi Collaboration, Aharonian, Felix, Akamatsu, Hiroki, Akimoto, Fumie, Allen, Steven W., Angelini, Lorella, Audard, Marc, Awaki, Hisamitsu, Axelsson, Magnus, Bamba, Aya, Bautz, Marshall W., Blandford, Roger, Brenneman, Laura W., Brown, Gregory V., Bulbul, Esra, Cackett, Edward M., Chernyakova, Maria, Chiao, Meng P., Coppi, Paolo S., Costantini, Elisa, de Plaa, Jelle, de Vries, Cor P., den Herder, Jan-Willem, Done, Chris, Dotani, Tadayasu, et al


  • We present the results from the Hitomi Soft Gamma-ray Detector (SGD) observation of the Crab nebula. The main part of SGD is a Compton camera, which in addition to being a spectrometer, is capable of measuring polarization of gamma-ray photons. The Crab nebula is one of the brightest X-ray/gamma-ray sources on the sky, and the only source from which polarized X-ray photons have been detected. SGD observed the Crab nebula during the initial test observation phase of Hitomi. We performed data analysis of the SGD observation, SGD background estimation, and SGD Monte Carlo simulations, and successfully detected polarized gamma-ray emission from the Crab nebula with only about 5 ks exposure time. The obtained polarization fraction of the phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1% ± 10.6%), and the polarization angle is {110{^{circ}.}7} {13{^{circ}.}2}/-{13{^{circ}.}0} in the energy range of 60-160 keV (the errors correspond to the 1 s deviation). The confidence level of the polarization detection was 99.3%. The polarization angle measured by SGD is about one sigma deviation with the projected spin axis of the pulsar, {124{^{circ}.}0} ± {0{^{circ}.}1}.

publication date

  • 2018