Skip to main content

What drove giant panda Ailuropoda melanoleuca expansion in the Qinling Mountains? An analysis comparing the influence of climate, bamboo, and various landscape variables in the past decade

Article

Publications

Complete Citation

Overview

Abstract

  • The role of climate and aclimatic factors on species distribution has been debated widely among ecologists and conservationists. It is often difficult to attribute empirically observed changes in species distribution to climatic or aclimatic factors. Giant pandas (Ailuropoda melanoleuca) provide a rare opportunity to study the impact of climatic and aclimatic factors, particularly the food sources on predicting the distribution changes in the recent decade, as well-documented information on both giant panda and bamboos exist. Here, we ask how the climate metrics compare to the bamboo suitability metric in predicting the giant panda occurrences outside the central areas in the Qinling Mountains during the past decade. We also seek to understand the relative importance of different landscape-level variables in predicting giant panda emigration outside areas of high giant panda densities. We utilize data from the 3rd and 4th National Giant Panda Surveys (NGPSs) for our analysis. We evaluate the performance of the species distribution models trained by climate, bamboo suitability, and the combination of the two. We then at 4 spatial scales identify the optimal models for predicting giant panda emigration between the 3rd and the 4th NGPSs using a list of landscape-level environmental variables. Our results show that the models utilizing the bamboo suitability alone consistently outperform the bioclimatic and the combined models; the distance to high giant panda density core area and bamboo suitability show high importance in predicting expansion probability across all four scales. Our results also suggest that the extrapolated bamboo distribution using bamboo occurrence data can provide a practical and more reliable alternative to predict potential expansion and emigration of giant panda along the range edge. It suggests that restoring bamboo forests within the vicinity of high giant panda density areas is likely a more reliable strategy for supporting shifting giant panda populations.

Publication Date

  • 2020

Authors