Skip to main content

A phylogenomic approach resolves the backbone of Prunus (Rosaceae) and identifies signals of hybridization and allopolyploidy

Article

Publications

Complete Citation

Overview

Abstract

  • The genus Prunus, which contains 250?400 species, has ample genomic resources for the economically important taxa in the group including cherries, peaches, and almonds. However, the backbone of Prunus, specifically the position of the racemose group relative to the solitary and corymbose groups, remains phylogenetically uncertain. Surprisingly, phylogenomic analyses to resolve relationships in the genus are lacking. Here, we assemble transcriptomes from 17 Prunus species representing four subgenera, and use existing transcriptome assemblies, to resolve key relationships in the genus using a phylogenomic approach. From the transcriptomes, we constructed 21-taxon datasets of putatively single-copy nuclear genes with 591 and 379 genes, depending on taxonoccupancy filtering. Plastome sequences were obtained or assembled for all species present in the nuclear data set. The backbone of Prunus was resolved consistently in the nuclear and chloroplast phylogenies, but we found substantial cytonuclear discord within subgenera. Our nuclear phylogeny recovered a monophyletic racemose group, contrasting with previous studies finding paraphyly that suggests repeated allopolyploidy early in the evolutionary history of the genus. However, we detected multiple species with histories consistent with hybridization and allopolyploidy, including a deep hybridization event involving subgenus Amygdalus and the Armeniaca clade in subgenus Prunus. Analyses of gene tree conflict revealed substantial discord at several nodes, including the crown node of the racemose group. Alternative gene tree topologies that conflicted with the species tree were consistent with a paraphyletic racemose group, highlighting the complex reticulated evolutionary history of this group.

Publication Date

  • 2021

Authors