Skip to main content

Sea level, dinosaur diversity and sampling biases: investigating the 'common cause' hypothesis in the terrestrial realm

Article

Publications

Complete Citation

Overview

Abstract

  • The fossil record is our primary window onto the diversification of ancient life, but there are widespread concerns that sampling biases may distort observed palaeodiversity counts. Such concerns have been reinforced by numerous studies that found correlations between measures of sampling intensity and observed diversity. However, correlation does not necessarily mean that sampling controls observed diversity: an alternative view is that both sampling and diversity may be driven by some common factor (e.g. variation in continental flooding driven by sea level). The latter is known as the 'common cause' hypothesis. Here, we present quantitative analyses of the relationships between dinosaur diversity, sampling of the dinosaur fossil record, and changes in continental flooding and sea level, providing new insights into terrestrial common cause. Although raw data show significant correlations between continental flooding/sea level and both observed diversity and sampling, these correlations do not survive detrending or removal of short-term autocorrelation. By contrast, the strong correlation between diversity and sampling is robust to various data transformations. Correlations between continental flooding/sea level and taxic diversity/sampling result from a shared upward trend in all data series, and short-term changes in continental flooding/sea level and diversity/sampling do not correlate. The hypothesis that global dinosaur diversity is tied to sea-level fluctuations is poorly supported, and terrestrial common cause is unsubstantiated as currently conceived. Instead, we consider variation in sampling to be the preferred null hypothesis for short-term diversity variation in the Mesozoic terrestrial realm.

Publication Date

  • 2011

Authors